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Stochastic equation for conserved growth in a restricted solid-on-solid model
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We apply the master-equation method naturally extended for the nonlocal growth process to directly deriv-
ing the continuum stochastic equation for a conserved growth model with a restricted solid-on-solid condition.
The Villain-Lai–Das Sarma growth equation we obtain for the model is consistent with the result of recent
numerical simulations. Furthermore, we find that only the relaxation of the deposited particles up to the nearest
neighborhood forN51 condition or the next-nearest neighborhood forN.1 condition determines the scaling
property and the universality class of the model, and the higher-neighbor hopping processes play no essential
role. The choice of the regularization scheme in the derivation procedure is also discussed.
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PACS number~s!: 81.10.Aj, 05.40.1j, 82.20.Mj
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I. INTRODUCTION

The study of nonequilibrium surface growth has attrac
considerable interest in both theoretical and experime
physics @1–5#, and recently more and more attention h
been focused on the growth via molecular beam epit
~MBE! @6–10#. During the MBE growth process, the con
served growth condition is fulfilled, and evaporation and d
fects, such as overhangs and vacancies, are considered
negligible. In recent years, a number of discrete conser
models for MBE have been proposed to describe the kin
roughening properties of surface growth@1–4,8–10#. By ex-
tensively studying these models, one can obtain the sca
behaviors and the corresponding universality classes,
then associate the continuum stochastic equations with
given discrete growth models.

There are two main categories of methods of establish
the correspondence between a continuum growth equa
and a discrete model. The first one, which is most used in
research work@8–10#, is to numerically simulate the mode
and compare the obtained scaling exponents with thos
the corresponding continuum equation. The other one i
derive the continuum equation from a given discrete mo
analytically, including the method using the principle
symmetry@11# or reparametrization invariance@12#, and the
approaches starting from the master equation@13,14#.
Among them, a systematic method proposed by Vveden
et al. @14#, where the continuum equations can be co
structed directly from growth rules of the discrete mod
based on the master-equation description, has been appli
the derivation of growth equations for some discrete mod
@14–17#, including a solid-on-solid~SOS! model with an
Arrhenius-type rate @14#, the restricted solid-on-solid
~RSOS! model @18#, as well as the Wolf-Villain~WV! @8#
and Das Sarma–Tamborenea~DT! @9# models. It has been
pointed out@19,16# that this method fails for an unrestricte
SOS diffusion model with Glauber dynamics@10#, but works
for the simple relaxation models, such as the RSOS, W
and DT models.

Recently, a new MBE growth model with a RSOS con
tion has been proposed and studied by Kimet al. @20,21#.
571063-651X/98/57~4!/4480~6!/$15.00
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This model allows the deposited particle to relax to the ne
est site where the RSOS condition on neighboring heig
udhu50,1, . . . ,N @18# is satisfied, and then has the constra
of the conserved growth condition. Numerical simulatio
showed that this model follows the Villain-Lai–Das Sarm
~VLD ! growth equation@6,7#. Since it has been found@15#
that the master-equation method of Vvedenskyet al. @14#
works well for the RSOS growth, where the height diffe
ence between the nearest-neighbor sites remains restrict
is interesting to apply the method to this conserved grow
model with the RSOS condition both for investigating t
essential properties of the growth model and for studying
uncertainty of the method, especially the regularizat
scheme@16#.

In this paper, we analytically study the above conserv
model with RSOS condition in 111 dimensions using the
procedure of Vvedenskyet al. @14# and directly derive the
VLD growth equation for the model. This result is indepe
dent ofN and in agreement with recent computer simulatio
@20,21#. Since, in principle, the deposited particles in th
model are possible to hop for a long distance, we natur
extend the procedure of Vvedenskyet al. for this nonlocal
process, while in the previous work of deriving the grow
equations@14–17# the relaxation process is restricted to t
nearest neighborhood. Moreover, we find that the sca
behavior as well as the universality class of the model
determined by the relaxation process of the particles up
the nearest neighborhood forN51 or up to the next-neares
neighborhood forN.1, and the higher-neighbor hoppin
processes are irrelevant and play a negligible role. In Sec
we show the derivation of the continuum equation describ
the conserved growth model and consider different choi
of the regularization scheme. The discussions are prese
in Sec. III, and finally, a conclusion is given in Sec. IV.

II. DERIVATION OF GROWTH EQUATION

The derivation procedure of Vvedenskyet al. @14# begins
with the master-equation description of the microscopic
namics of the discrete model:
4480 © 1998 The American Physical Society



e

ss
-

th

uc

de

:

e
c
nd
tion
d
is-

on
e
ion

on
the

pre-
-
of

he
ains
nd

his
r-

ed
del
orm
-

57 4481STOCHASTIC EQUATION FOR CONSERVED GROWTH IN . . .
]P~H;t !

]t
5(

H8
W~H8,H!P~H8;t !2(

H8
W~H,H8!P~H;t !,

~1!

whereH5$h1 ,h2 , . . . % with the column height variablehi
( i 51,2, . . . ) represents the configuration of the surfac
W(H,H8) is the transition rate from the configurationH to
the configurationH8, which reflects the microscopic proce
of the surface growth, andP(H;t) denotes the joint probabil
ity that the surface has the configurationH at time t.

The above master equation can be turned into
Kramers-Moyal expansion form@22#, which reduces to the
Fokker-Planck equation

]P~H;t !

]t
52

]

]hi
@Ki

~1!P~H;t !#1
1

2

]2

]hi]hj
@Ki j

~2!P~H;t !#,

~2!

provided that the system size is large and the intrinsic fl
tuations are not too large, as shown by Fox and Keizer@23#.
In Eq. ~2!, the first and second transition moments are
fined as

Ki
~1!5(

H8
~hi82hi !W~H,H8! ~3!

and

Ki j
~2!5(

H8
~hi82hi !~hj82hj !W~H,H8!. ~4!

Thus, the equivalent Langevin equation can be obtained

dhi

dt
5Ki

~1!1h i~ t !, ~5!
e
a
s
co
o

,

e

-

-

where the Gaussian white noiseh i satisfies

^h i~ t !&50, ^h i~ t !h j~ t8!&5Ki j
~2!d~ t2t8!. ~6!

Therefore, with the explicit form of the transition rat
W(H,H8) obtained from the dynamical rule of the specifi
growth model, the nonlinear discrete Langevin equation a
the noise covariance can be derived. Then a regulariza
procedure is used@14,16# to pass to the continuum limit an
directly derive the continuum stochastic equation for the d
crete model.

In the conserved growth model with the RSOS conditi
proposed by Kimet al. @20#, a particle is deposited onto th
substrate randomly and will stay there if the RSOS condit
on neighboring heightsudhu50,1, . . . ,N is obeyed after
deposition. Otherwise, the deposited particle will relax
the surface until it finds the nearest site that satisfies
RSOS condition. This relaxation process is absent in the
vious nonconserved RSOS model@18# and produces the con
straint of conserved growth. Thus, on the growth surface
the model, the RSOS condition is fulfilled at all sites and t
height difference between the nearest-neighbor sites rem
not larger thanN. Consequently, as pointed out by Park a
Kahng @15#, the procedure of Vvedenskyet al., especially
the regularization process, is much more convincing in t
model than in other MBE models in which the growth su
faces contain high steps.

In principle, the deposited particle of this conserv
model is possible to relax for a long distance, thus this mo
may contain nonlocal growth processes. Therefore, the f
of the transition rateW(H,H8) should include the terms rep
resenting the long-distance relaxations, and is written as
W~H,H8!5t21(
k

Fwk
~0!d~hk8 ,hk1a!)

j Þk
d~hj8 ,hj !1wk

~21!d~hk218 ,hk211a! )
j Þk21

d~hj8 ,hj !1wk
~11!d~hk118 ,hk111a!

3 )
j Þk11

d~hj8 ,hj !1wk
~22!d~hk228 ,hk221a! )

j Þk22
d~hj8 ,hj !1wk

~12!d~hk128 ,hk121a! )
j Þk12

d~hj8 ,hj !1•••G
5t21(

k
H wk

~0!d~hk8 ,hk1a!)
j Þk

d~hj8 ,hj !1(
l 51

` Fwk
~2 l !d~hk2 l8 ,hk2 l1a! )

j Þk2 l
d~hj8 ,hj !

1wk
~1 l !d~hk1 l8 ,hk1 l1a! )

j Þk1 l
d~hj8 ,hj !G J , ~7!
-

where a is the lattice constant, andt denotes the averag
deposition time for a layer. Thewk

(0) term represents that
particle is deposited at sitek where the RSOS condition i
obeyed after deposition, and stays there. Thus, this term
responds to the case of the usual nonconserved RSOS m
and is defined asf k here. ForN51, it is given by@15#

f k[wk
~0!5Q~hk112hk!Q~hk212hk!, ~8!
r-
del

whereQ(x) is the unit step function defined by

Q~x!5H 1 if x>0,

0 if x,0.

Formula~8! means that the height of sitek is not larger than
that of nearest-neighbor sitesk11 andk21. Otherwise, af-
ter a particle is deposited at sitek the height difference be
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tween sitek and its nearest-neighbor site is larger than
which disobeys theN51 RSOS condition. Furthermore, w
extend this formula to be more general and include the ca
for N.1, that is,

f k[wk
~0!5Q„hk112@hk2~N21!a#…

3Q„hk212@hk2~N21!a#…. ~9!

For the termswk
(21) andwk

(11) , sitek does not satisfy the
RSOS conditionf k , but the nearest-neighbor sitek21 or
k11 obeys. Then they can be written as

wk
~21!5~12 f k! f k21(12 f k111 1

2 f k11) ~10!

and

wk
~11!5~12 f k! f k11(12 f k211 1

2 f k21), ~11!

respectively, where 1/2 represents that if sitesk21 andk11
are equally preferable, one of them is chosen at random.
formulas ofwk

(62) , wk
(63) , . . . are similar, that is,

wk
~22!5~12 f k!~12 f k21!~12 f k11! f k22(12 1

2 f k12),

wk
~12!5~12 f k!~12 f k21!~12 f k11! f k12(12 1

2 f k22),

wk
~23!5~12 f k!~12 f k21!~12 f k11!~12 f k22!

3~12 f k12! f k23(12 1
2 f k13), ~12!

wk
~13!5~12 f k!~12 f k21!~12 f k11!~12 f k22!

3~12 f k12! f k13(12 1
2 f k23),

. . . .

Therefore, the common form ofwk
(6 l ) ( l>2) can be written

as

wk
~6 l !5~12 f k!F )

n51

l 21

~12 f k2n!~12 f k1n!G f k6 l(12 1
2 f k7 l),

~13!

which describes the situation that sitesk, k61, . . . ,
k6( l 21) do not obey the RSOS condition, while sitek1 l
or k2 l obeys. Then the deposited particle at sitek hops to
site k2 l or k1 l . From the above formulas~10!–~13!, we
can obtain the condition

wk
~0!1wk

~21!1wk
~11!1wk

~22!1wk
~12!1•••

5wk
~0!1(

l 51

`

@wk
~2 l !1wk

~1 l !#51, ~14!

which guarantees that the average deposition rate per
remainst21.

From Eqs.~3! and~4!, the first and second transition mo
ments for this conserved growth model become

Ki
~1!5

a

t
@wi

~0!1wi 11
~21!1wi 21

~11!1wi 12
~22!1wi 22

~12!1•••#

5
a

t Fwi
~0!1(

l 51

`

~wi 1 l
~2 l !1wi 2 l

~1 l !!G , ~15!
,

es

he

ite

and

Ki j
~2!5aKi

~1!d i j . ~16!

Thus, using Eqs.~5! and~6!, we obtain the discrete Langevi
equation for this conserved growth model.

In the next step, we regularize the discrete Langevin eq
tion by expanding the nonanalytic quantities and replac
them with analytic quantities. In this regularization proc
dure, the step function can be approximated by an anal
shifted hyperbolic tangent function, which is expanded
Taylor series@14–17#. As pointed out by Prˇedota and Kotrla
@16#, the choice of regularization scheme for the step fu
tion has the uncertainty. One expansion form

Q~x!'11 (
k51

`

Akx
k ~17!

was used in some work@14,15,17#, where A1.0, A3,0,
A5.0, . . . , andA2, A4, A6, . . . are very small and negli
gible according to the expansion form of the hyperbolic ta
gent function@17#. Recently, another choice of the regula
ization function was considered for some discrete mod
@16#, that is,

Q~x!'(
k50

`

Akx
k, ~18!

where 1/2,A0,1, A1.0, andA2,0. If A051, the regu-
larization form ~17! is recovered. In the following, we will
apply these two choices of regularization to studying
conserved model with the RSOS condition.

First, we use regularization~17! on this discrete model
Taking the limit of the lattice constanta→0, we expand
(hj2hi), j 5 i 61,i 62, . . . , inpowers ofa, and assume tha
the discrete height variable of the surfacehi(t) can be re-
placed by an analytic functionh(x,t) with x5 ia, which is
smooth at the macroscopic scale. Therefore, substituting
mula ~17! into Eqs. ~9!–~13!, and then into Eqs.~15! and
~16!, and expanding the height variables, we can obtain
corresponding continuum stochastic equation.

If only the w(0) term in formulas~7! and ~15! is consid-
ered, we return to the nonconserved RSOS model@18#. Us-
ing relation~9!, the general form of the probability forN>1,
and retaining the most relevant terms, we obtain the Kard
Parisi-Zhang ~KPZ! equation @24# for the nonconserved
RSOS model

]h

]t
5n2¹2h1

l

2
~¹h!21F1h, ~19!

where

n25
a3

t
A1 ,

l5
2a3

t
~2A1

212A2!, ~20!

F5
a

t
@112A1~N21!a1~A1

212A2!~N21!2a2#,
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and the noise covariance is

^h~x,t !h~x8,t8!&5
a2

t
@112A1~N21!a#d~x2x8!d~ t2t8!,

~21!

up to O(a3). It is noted that the coefficients of KPZ nonlin
earity (¹h)2 and Edwards-Wilkinson~EW! @25# term ¹2h
are independent ofN, and consistent with that derived in th
previous work@15# for N51. Thus, we have analytically
verified that N is irrelevant in the nonconserved RSO
model, which has been obtained in the numerical simulati
@18#.

For the conserved RSOS growth model, the relaxat
processes on the growth surface, which are reflected in
w(6 l ) terms of formulas~7! and ~15!, should be considered
The growth equation we derive is also independent ofN. For
the transition moments, up toO(a5) we have

K ~1!~x!5
a

tF12
1

2
A1a4

]4h

]x4
1S 1

2
A1

22A2Da4
]2

]x2S ]h

]xD 2G
1O~a6!, ~22!

and

K ~2!~x,x8!5
a2

t
d~x2x8!1O~a6!. ~23!

Thus, from Eqs.~5! and ~6!, we obtain that the continuum
stochastic equation for the conserved growth in the RS
model is the VLD equation

]h

]t
52n4¹4h1l22¹

2~¹h!21F1h, ~24!

where the coefficients are given by

n45
a5

2t
A1 ,

l225
a5

t S 1

2
A1

22A2D , ~25!

F5
a

t
,

and the noise covariance is written as

^h~x,t !h~x8,t8!&5
a2

t
d~x2x8!d~ t2t8!. ~26!

From the above derivation process, there is no EW te
¹2h in the growth equation. However, if the nonlineariti
¹(¹h)2n11 exist in the higher-order expansion, the EW te
would be generated according to the dynami
renormalization-group~DRG! analysis@26,27#, and then this
model should belong to the EW universality class instead
VLD. Therefore, to study the model more explicitly, we e
pand Ki

(1) to higher orders. We obtain that the terms
O(a2n) for Ki

(1) @i.e., the odd order ofa, O(a2n21), for
s

n
he

S

m

l

f

f

wi
(0)1( l 51

` (wi 1 l
(2 l )1wi 2 l

(1 l ))] vanish, due to the isotropic
growth in the model which contains the symmetry betwe
sitesi 1 l andi 2 l on the surface. The terms appearing in t
stochastic growth equation are~for m,n>1) the linear terms
¹2m12h, the nonlinearities¹2m11(¹h)2n11, which generate
terms¹2m¹2h according to the DRG analysis of Kshirsag
and Ghaisas@27#, and the nonlinearities¹2m(¹h)2n, which
lead to terms¹2m(¹h)2 also according to Kshirsagar an
Ghaisas@27#. Thus, the nonlinearities¹(¹h)2n11 do not
arise in the growth equation and consequently no EW term
generated in the model.

Next, we apply the other regularization form~18! to the
derivation procedure. It is shown from our deduction that
continuous representation of the first transition mom
K (1)(x) is different from formula~22!, except forA051, and
then the results for this conserved growth model depend
the regularization scheme chosen. The similar problem
been found by Prˇedota and Kotrla@16# in the study of the
WV model.

When we consider all the relaxation processes up to
tancel , for N51 the form of the transition moment~15! up
to the third order is given by

F1
a

t H ~2l 11!~12A0
2!2la2FA0A1

]2h

]x2

1~2A1
212A0A2!S ]h

]xD 2G J ,

whereF represents the average deposition flux. Since in
derivation procedure of this growth model the relaxation
all distances should be included in principle to guarantee
conserved condition, we havel→`. Consequently, the coef
ficients of the EW and KPZ terms shown above tend to ze
as in the regularization form~18! A0P(1/2,1) and then
12A0

2,1. However, the coefficients of the nonlinearitie
¹(¹h)2n11 appearing in the higher-order expansion can
vanish asl→`. For instance, the coefficientl13 of ¹(¹h)3

has the form

a5

t
$2l ~2l 11!~12A0

2!2l 21A0A1
32~2l 11!

3@4lA0
2~12A0

2!2l 211~12A0
2!2l #A1A2

13~2l 11!~12A0
2!2lA0A3%.

The last term tends to zero whenl→`, but the other two do
not. Thus, settingl→` we can obtain

l135
2a5~A0A1

322A0
2A1A2!

23t ln~12A0
2!

. ~27!

SinceA0.0, A1.0, A2,0, and 12A0
2,0 for regulariza-

tion ~18!, we havel13.0. Therefore, the¹(¹h)3 nonlinear-
ity, which is the most relevant here, leads to the EW univ
sality class according to both the direct numerical integrat
study @28# and the DRG analysis@26#. However, this result
contradicts recent numerical simulations by Kimet al.
@20,21#, where no EW behavior was observed.
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It is noted that regularization~18! was introduced origi-
nally for some discrete models in which thed function is to
be defined and the situations where the argument of the
function is zero have to be distinguished@16#. Since this
problem does not exist in the studying of the nonconser
RSOS model as well as the conserved RSOS growth h
the regularization form~17! can be used. From the abov
results derived and the comparison with recent comp
simulations, one can find that the regularization relation~17!
is expected to be the preferable choice for this conser
model, while for regularization~18!, the result in contradic-
tion with the numerical simulations is obtained. Thus, t
discussions below are based on the results of regulariza
~17!.

III. DISCUSSION

According to the above derivation using the regularizat
form ~17!, we can find that the terms appearing in the grow
equation can be classified as the linear terms¹2m12h and the
nonlinearities¹2m(¹h)2, while the other terms can lead t
one of them using the DRG analysis. Among them, the m
relevant term is VLD nonlinearity¹2(¹h)2 from the
renormalization-group viewpoint. Therefore, keeping t
nonlinearity as well as the meaningful lowest-order te
¹4h, we have the conclusion that the conserved grow
model with the RSOS condition is governed by the VL
equation~24!, which is consistent with the result of numer
cal simulations@20,21#. Moreover, from the expression~25!
of the coefficients in Eq.~24! and the signs ofAk for regu-
larization ~17! shown above, that is,A1.0 andA2 is very
small, we haven4.0, which is in agreement with the phe
nomenological consideration, andl22.0, which confirms
the previous result@20,21# obtained from the argument tha
in this model surface current is generated from the hig
sloped region to the lower sloped region.

It is noted that the terms in VLD equation~24!, which
determine the scaling property and the universality class
the model, come from the expansion of the transition m
ment Ki

(1) up to O(a5) @or O(a4) for wi
(0) and wi 6 l

(7 l )] , and
then the higher-order expansion is irrelevant and has no
sential influence. Thus, it is interesting to estimate the low
order of the expansion ofwi

(0) andwi 6 l
(7 l ) , which correspond

to different relaxation processes of the deposited partic
From formula~9! and regularization form~17! we obtain that
the lowest order in the expansion ofwi

(0) is O(1), andthat of
wi 11

(21) and wi 21
(11) is O(a2) for N51 and O(a) for N.1

from Eqs.~10! and~11!. Moreover, it is shown from formu-
las ~12! and~13! that the lowest order ofwi 62

(72) is O(a6) for
N51 and O(a3) for N.1, the lowest order ofwi 63

(73) is
O(a10) for N51 andO(a5) for N.1, . . . , andcommonly,
the lowest order in the expansion ofwi 6 l

(7 l ) is O(a2(2l 21)) for
N51 and O(a2l 21) for N.1. Therefore, whenl>2 for
N51, which corresponds to the relaxation process bey
the nearest neighborhood, orl>3 for N.1, which corre-
sponds to the relaxations beyond the next-nearest neigh
hood, the expansion ofwi 6 l

(7 l ) is higher than the meaningfu
O(a4), and then cannot have relevant influence on the s
ing property of the growth model. Recent computer simu
ep
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tions @21# have shown that the probability for a deposit
particle to hop for a long distance is very low, here we c
have a further conclusion from the above analytic study t
only the relaxation process of the particle up to the nea
neighborhood forN51 or the next-nearest neighborhood f
N.1 determines the scaling behavior and the universa
class of the model, and the higher-neighbor relaxation p
cesses are irrelevant and play an inessential and neglig
role. Thus, essentially this conserved model is still a lo
model.

Both the above analytic investigation and recent num
cal simulations have verified that there is no EW term in t
conserved model. The physical origin of this result can
obtained by studying the microscopic process of the grow
Kim et al. @20,21# have argued that since a deposited parti
is allowed to hop equally in both up and down directions
the model, there is no net surface current and conseque
no EW term can be generated according to the method of
tilt-dependent surface current analysis proposed by Kr
Plischke, and Siegert@29#. However, for this conserved
model withN51 RSOS condition, the uphill hopping of th
deposited particle in 111 dimensions can occur only beyon
the nearest neighborhood, which has been shown above
irrelevant and have an inessential influence on the sca
behavior and the universality class of the model. For
relevant nearest-neighbor relaxation process in 111 dimen-
sions, a particle is not allowed to hop to the higher neare
neighbor site, otherwise the RSOS conditionudhu<1 cannot
be satisfied there. Therefore, the argument of Kimet al. is
questionable forN51 and 111 dimensions, while forN.1
the above problem is not encountered and the argumen
Kim et al. is reasonable.

IV. CONCLUSION

We have directly derived the VLD equation for a co
served growth model with the RSOS condition using t
master-equation method of Vvedenskyet al., which can be
naturally extended for the nonlocal growth process. T
growth equation as well as the coefficients are verified to
independent ofN. Although the model can contain the long
distance hopping processes in principle, the relevant re
ation that determines the scaling behavior and the univer
ity class is only up to nearest neighborhood forN51 or up
to next-nearest neighborhood forN.1, and the higher-
neighbor hoppings are irrelevant and play no essential r
These results are based on the regularization form~17! which
is expected to be preferable for this conserved RSOS mo
while for the other regularization scheme~18!, the results we
derive are in contradiction with recent numerical simu
tions. Thus, for this conserved RSOS model the results of
master-equation method depend on the regulariza
scheme used. To choose the proper regularization, the
cific growth rules of the discrete model as well as the co
parison with the numerical simulations should be consider
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