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Stochastic equation for conserved growth in a restricted solid-on-solid model

Zhi-Feng Huang
Center for Advanced Study, Tsinghua University, Beijing 100084, People’s Republic of China

Bing-Lin Gu
Center for Advanced Study, Tsinghua University, Beijing 100084, People’s Republic of China
and Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China
(Received 28 October 1997; revised manuscript received 11 December 1997

We apply the master-equation method naturally extended for the nonlocal growth process to directly deriv-
ing the continuum stochastic equation for a conserved growth model with a restricted solid-on-solid condition.
The Villain-Lai—-Das Sarma growth equation we obtain for the model is consistent with the result of recent
numerical simulations. Furthermore, we find that only the relaxation of the deposited particles up to the nearest
neighborhood foN=1 condition or the next-nearest neighborhoodNor 1 condition determines the scaling
property and the universality class of the model, and the higher-neighbor hopping processes play no essential
role. The choice of the regularization scheme in the derivation procedure is also discussed.
[S1063-651%98)07604-1

PACS numbes): 81.10.Aj, 05.40+], 82.20.Mj

I. INTRODUCTION This model allows the deposited particle to relax to the near-

The study of nonequilibrium surface growth has attractejest site where the RSOS condition on neighboring heights
[

considerable interest in both theoretical and experiment f th d wih diti N ical simulati
physics[1-5], and recently more and more attention has®! the conserved gro condition. frumerical simuations
been focused on the growth via molecular beam epitaX)?’hOW(ad that this mo_del fOHOW.S the_ Villain-Lai-Das Sarma
(MBE) [6—10]. During the MBE growth process, the con- (VLD) growth equatlori6,7]. Since it has been found.5]
served growth condition is fulfilled, and evaporation and dethat the master-equation method of Vvedensital. [14]
fects, such as overhangs and vacancies, are considered to¥@rks well for the RSOS growth, where the height differ-
negligible. In recent years, a number of discrete conservence between the nearest-neighbor sites remains restricted, it
models for MBE have been proposed to describe the kinetits interesting to apply the method to this conserved growth
roughening properties of surface groWth-4,8—1Q. By ex-  model with the RSOS condition both for investigating the
tensively studying these models, one can obtain the scalingssential properties of the growth model and for studying the
behaviors and the corresponding universality classes, anghcertainty of the method, especially the regularization
then associate the continuum stochastic equations with thechemg16].
given discrete growth models. In this paper, we analytically study the above conserved
There are two main categories of methods of establishingnodel with RSOS condition in 41 dimensions using the
the correspondence between a continuum growth equatigsvocedure of Vvedenskgt al. [14] and directly derive the
and a discrete model. The first one, which is most used in thQLD growth equation for the model. This result is indepen_
research work8-10, is to numerically simulate the model gent ofN and in agreement with recent computer simulations
and compare the obtained scaling exponents with those ¢bg 21]. Since, in principle, the deposited particles in this
the corresponding continuum equation. The other one is ttnodel are possible to hop for a long distance, we naturally
derive the continuum equation from a given discrete model,,:onq the procedure of Vvedenskyal. for this nonlocal

znﬂﬁiect?"gi ﬂingrlurgingr;::]eetrmztthgr?.#5;':% ntgfz]pg?:éirilﬁe of process, while in the previous work of deriving the growth
y y P zation Invari ’ equationg 14—17 the relaxation process is restricted to the

approaches starting from the master equatidrs,14. . ! .
Among them, a systematic method proposed by Vvedensk earest neighborhood. Moreover, we find that the scaling
ehavior as well as the universality class of the model are

et al. [14], where the continuum equations can be con-d termined by the relaxation or f th ricl i
structed directly from growth rules of the discrete model ete ed by the relaxation process ot the particles up 1o

based on the master-equation description, has been applied%pf nearest neighborhood =1 or up to the next-neargst
the derivation of growth equations for some discrete modelgaghborhood _forN>1, and the h|gher-_n¢|ghbor hopping
[14-17, including a solid-on-solidSOS model with an processes are wreleyant and play a negligible r_ole. In Sgc_. I,
Arthenius-type rate [14], the restricted solid-on-solid we show the derivation of the continuum equation describing
(RSOS model[18], as wéll as the Wolf-Villain(WV) [8] the conserved growth model and consider different choices
and Das Sarma—'l,'amboren(EB\T) [9] models. It has been of the regularization scheme. The discussions are presented

pointed out{19,16 that this method fails for an unrestricted in Sec. Ill, and finally, a conclusion is given in Sec. IV.

SOS diffusion model with Glauber dynamilc0], but works

for the simple relaxation models, such as the RSOS, WV,

and DT models. The derivation procedure of Vvedenskyal.[14] begins
Recently, a new MBE growth model with a RSOS condi- with the master-equation description of the microscopic dy-

tion has been proposed and studied by Kairal. [20,21]. namics of the discrete model:

oh|=0,1, ... N [18] s satisfied, and then has the constraint

II. DERIVATION OF GROWTH EQUATION
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AP(H;t) where the Gaussian white noisg satisfies

ot

=2, W(H',H)P(H’;t)— >, W(H,H")P(H;t),
H’ H’
(1)

whereH={hq,h,, ...} with the column height variablg;

(i=1,2,...) represents the configuration of the surface,

W(H,H’) is the transition rate from the configuratiéh to Therefore, with the explicit form of the transition rate

the configuratiorH’, which reflects the microscopic process W(H,H’) obtained from the dynamical rule of the specific

of the surface growth, anél(H;t) denotes the joint probabil- growth model, the nonlinear discrete Langevin equation and

ity that the surface has the configuratiinat timet. the noise covariance can be derived. Then a regularization
The above master equation can be turned into thgyocedure is usefl4,16 to pass to the continuum limit and

Kramers-Moyal expansion forrf22], which reduces to the girectly derive the continuum stochastic equation for the dis-
Fokker-Planck equation

(m(1)=0, (mO)mt))=KPst-t). (6

crete model.
IP(H:t) P 1 g2 In the conserved growth model with the RSOS condition
at = m[KE“P(H;t)]ﬂL > Sah [KEZP(H; D], proposed by Kimet al.[20], a particle is deposited onto the
[ ion;

substrate randomly and will stay there if the RSOS condition
@ on neighboring height§sh|=0,1,... N is obeyed after
provided that the system size is large and the intrinsic flucdeposition. Otherwise, the deposited particle will relax on
tuations are not too large, as shown by Fox and Kdizal. ~ the surface until it finds the nearest site that satisfies the

In Eq. (2), the first and second transition moments are deRSOS condition. This relaxation process is absent in the pre-
fined as vious nonconserved RSOS mo@#8] and produces the con-

straint of conserved growth. Thus, on the growth surface of
(1 , , the model, the RSOS condition is fulfilled at all sites and the
Ki —2 (hi —hi))W(H,H’) ©) height difference between the nearest-neighbor sites remains
H not larger tharN. Consequently, as pointed out by Park and
and Kahng [15], the procedure of Vvedenskst al, especially
the regularization process, is much more convincing in this
model than in other MBE models in which the growth sur-
faces contain high steps.
In principle, the deposited particle of this conserved
Thus, the equivalent Langevin equation can be obtained: model is possible to relax for a long distance, thus this model
may contain nonlocal growth processes. Therefore, the form

K@=2 (h{=h)(h/—h)W(H,H"). (4)
HI

dh,

oKW (b 5) of the transition rat&V(H,H') should include the terms rep-
dt : KORE resenting the long-distance relaxations, and is written as
W(H,H) =71 [wﬁo)é(hlﬁ,thra)H s(hi \hp+wi-Ps(hy_; he_1+a) s(h! .hp)+wi ™ a(hy, 1 g+ a)
K j#k jFk—1
x [T ah),hp+wi 2 8(h;_, h_o+a) S(hi ) +wi 2 a(hy, 5 hei o+ a) s(hj hp+- -
jFk+1 j#k—2 j#k+2

[

=y |w(k°>5(h{<,hk+a)l_[ s(h! h)+2> [Wf(_')é(h,;,,hkﬁa) IT s/ .hp
K j#k j#k—1

I=1

+wi " s(hy,, ,hk+|+a>jg+l s(h] ,hJ-)H, )

wherea is the lattice constant, and denotes the average where®(x) is the unit step function defined by
deposition time for a layer. Thw‘ko) term represents that a )

particle is deposited at site where the RSOS condition is 1 it x=0,
obeyed after deposition, and stays there. Thus, this term cor- O(X)=10 if x<o.
responds to the case of the usual nonconserved RSOS model

and is defined a here. FoN=1, it is given by[15] Formula(8) means that the height of sikeis not larger than

© that of nearest-neighbor sitks-1 andk—1. Otherwise, af-
fi=w,'=0(h 1 —h)O(h_;—hy), (8)  ter a particle is deposited at sikethe height difference be-
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tween sitek and its nearest-neighbor site is larger than 1,and
which disobeys th&l=1 RSOS condition. Furthermore, we @ @
extend this formula to be more general and include the cases Kij"=aK"gj; . (16)

for N>1, that i . . . .
or - thatls, Thus, using Eqg5) and(6), we obtain the discrete Langevin

fi=w=0(hg,,—[h—(N-1)a]) equation for this conserved growth model.
In the next step, we regularize the discrete Langevin equa-
X O (hg-1—[he—=(N-1)a]). (9 tion by expanding the nonanalytic quantities and replacing

_ . . them with analytic quantities. In this regularization proce-
(-1) (+1)
For the te_r MW andw," ™, sitek d_oes Not s_atlsfy the dure, the step function can be approximated by an analytic
RSOS conditionfy, but the nearest-neighbor sile-1 or  gpifted hyperbolic tangent function, which is expanded in
k+1 obeys. Then they can be written as Taylor serie§14—17. As pointed out by Fadota and Kotrla
(-1)_/q_ _ 1 [16], the choice of regularization scheme for the step func-
wy, V=1-f)f 1 (1—f+3f 10 : . .
=m0 hea(l - fea 2 i) (10 fon has the uncertainty. One expansion form
and

w = (1= ffi (A= foa+ i), (AD) O()~1+ 2 AxX! (17

respectively, where 1/2 represents that if skesl andk+ 1 was used in some workl4,15,17, where A;>0, A;<0,

?re eqluallyf pzifgrab!ib?ne of them is Fl:hosin gt random. Thﬁ5>0, ..., andA,, Ay, Ag ... are very small and negli-
ormulas ofwi=*", wi™, ... are similar, that is, gible according to the expansion form of the hyperbolic tan-
(=2)_(1_ _ _ _1 gent function[17]. Recently, another choice of the regular-
w 1-f)(1—-f_(A—f froo(1—3f , 2= . 4 :
k ( ) k-l ) fie2(1 2 o) ization function was considered for some discrete models
Wi = (1= f) (1= fee ) (1= e D) fraa(1- 3 F2), [16], that is,
Wi ¥ = (1= f) (1= fie ) (1 e ) (1= i) 00~ Axk. 19
k=0
X (1= fyio) fuoa(1—3fsa), (12

(+3)_ where 1/2<Ag<1, A;>0, andA,<0. If Ag=1, the regu-
Wi T =1 (1= i )= fi ) (1= fi2) larization form(17) is recovered. In the following, we will
< (1—f f 1-1f, ), apply these two choices of regularization to studying the
(1~ T2l i a(1 72 o) conserved model with the RSOS condition.
First, we use regularizatio(lL7) on this discrete model.
Taking the limit of the lattice constara—0, we expand

Therefore, the common form ei{"" (1=2) can be written  (h;—h;), j=i+1i=2,..., inpowers ofa, and assume that
as the discrete height variable of the surfaeét) can be re-
-1 placed by an analytic functioh(x,t) with x=ia, which is
(=D _ (1 _ _ _ _1f smooth at the macroscopic scale. Therefore, substituting for-
Wi =(1=1) nﬂl (A= Fien) (1= Fien) e (1= 2 Fiz1), mula (17) into Egs.(9)—(13), and then into Eqs(15) and

(13) (16), and expanding the height variables, we can obtain the
corresponding continuum stochastic equation.

If only the w(® term in formulas(7) and (15) is consid-
ered, we return to the nonconserved RSOS métigl. Us-
ing relation(9), the general form of the probability fdd=1,
and retaining the most relevant terms, we obtain the Kardar-
Parisi-Zhang (KPZ) equation [24] for the nonconserved
Wﬁo)+Wﬁ‘l)+w(k+l)+wf<‘2)+wf(+2)+ . RSOS model

which describes the situation that sitdg k*+1, ...,
k= (I—1) do not obey the RSOS condition, while ske- |

or k—1 obeys. Then the deposited particle at $ithops to
site k—1 or k+1. From the above formula€l0)—(13), we
can obtain the condition

@ dh A
— = 2h4 — 2
:W<k0)+IZl [wi D +wi =1, (14) pn voVoh+ 5 (Vh)*+F+ 7, (19

which guarantees that the average deposition rate per sité1€re
remainsr 1. 23
From Eqgs.(3) and(4), the first and second transition mo- V2:7A1,

ments for this conserved growth model become
(1) B0 (D) (D) e~ 2) 4 (+2) 2a°
Ki :;[WI +Wi+l +Wi—1 +Wi+2 +Wi_2 +] )\:T(_A1+2A2), (20)

a a
== Wi(o)-i-zl WP +wE |, (15) F=;[1+2A1(N—1)a+(A§+2A2)(N—1)2a2],
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and the noise covariance is

2
(m(x.0) (X' 1)) = - [1+2A4(N-D)al s(x—x') S(t—t"),

(21)

up to O(a%). It is noted that the coefficients of KPZ nonlin-

earity (Vh)? and Edwards-WilkinsofEW) [25] term V2h

are independent dfl, and consistent with that derived in the
previous work[15] for N=1. Thus, we have analytically
verified that N is irrelevant in the nonconserved RSOS e
model, which has been obtained in the numerical simulationg

[18].

For the conserved RSOS growth model, the relaxatio
processes on the growth surface, which are reflected in thlg
w( terms of formulag7) and (15), should be considered.

The growth equation we derive is also independeri ofor
the transition moments, up ©(a®) we have

a 1 d*h 8% [ ah\?
(1) — _ 4 A2 4~
K™ (x) - 1 2A1a ﬁx4+ 2A1 Asla (;)XZ((?X)
+0(af), (22
and
2
a
K(z)(x,x’)=75(x—x’)+0(a6). (23

Thus, from Egs(5) and (6), we obtain that the continuum
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w@+37  (wP+wT))] vanish, due to the isotropic
growth in the model which contains the symmetry between
sitesi +1 andi —| on the surface. The terms appearing in the
stochastic growth equation affer m,n=1) the linear terms
V2M*2h  the nonlinearitied 2™ 1(Vh)2"*1 which generate
termsV2™V2h according to the DRG analysis of Kshirsagar
and Ghaisa$27], and the nonlinearitie¥ >™(Vh)2", which
lead to termsV2™(Vh)? also according to Kshirsagar and
Ghaisas[27]. Thus, the nonlinearitie¥ (Vh)2"*! do not
arise in the growth equation and consequently no EW term is
nerated in the model.
Next, we apply the other regularization forth8) to the
derivation procedure. It is shown from our deduction that the
ontinuous representation of the first transition moment
()(x) is different from formula22), except forA,=1, and
then the results for this conserved growth model depend on
the regularization scheme chosen. The similar problem has
been found by Rdota and Kotrld16] in the study of the
WV model.

When we consider all the relaxation processes up to dis-
tancel, for N=1 the form of the transition momefi5) up
to the third order is given by

ApA _&2
0
L ox2

F+ ;{ (21+1)(1—-A%)?a?

2
+(—AZ4+2AA,) h
1 0/7\2 IX

stochastic equation for the conserved growth in the RSO{hereF represents the average deposition flux. Since in the

model is the VLD equation

dh
E:_V4V4h+)\22V2(Vh)2+F+ n, (24)

where the coefficients are given by

a5

V4:Z_Al,

51

a 2
_Al_AZ) , (25

N2=| 5

and the noise covariance is written as

2
(rX0 X )= - 5x-x)AE-t). (26

From the above derivation process, there is no EW term
V2h in the growth equation. However, if the nonlinearities

derivation procedure of this growth model the relaxation to
all distances should be included in principle to guarantee the
conserved condition, we have-. Consequently, the coef-
ficients of the EW and KPZ terms shown above tend to zero,
as in the regularization forn{18) Age(1/2,1) and then
1-A%<1. However, the coefficients of the nonlinearities
V(Vh)2"*1 appearing in the higher-order expansion cannot
vanish ad — . For instance, the coefficient,; of V(Vh)3

has the form

a‘5
—{212 +1)(1-AHZ IAAS—(21+1)

X[4IAN(1-A? 1+ (1-AY?TALA,
+3(21+1)(1—A3)? AgA;).

The last term tends to zero whéns o, but the other two do
not. Thus, setting—c we can obtain

2a%(AA3—2A3AA,)
—37In(1—A?)

(27)

13~

V(Vh)2"*1 exist in the higher-order expansion, the EW termSince A;>0, A;>0, A,<0, and 1—A(2)<O for regulariza-

would be generated according to

the dynamicalion (18), we have\ ;5>0. Therefore, th& (Vh)2 nonlinear-
renormalization-groudDRG) analysig[26,27], and then this

ity, which is the most relevant here, leads to the EW univer-

model should belong to the EW universality class instead okality class according to both the direct numerical integration
VLD. Thlerefore_, to study the model more explicitly, we ex- study[28] and the DRG analysif26]. However, this result
pand K™ to higher orders. We obtain that the terms of contradicts recent numerical simulations by Kiet al.

O(a?") for KM [i.e., the odd order of, O(a?""?), for

[20,21], where no EW behavior was observed.
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It is noted that regularizatiofil8) was introduced origi- tions [21] have shown that the probability for a deposited
nally for some discrete models in which tldgfunction is to  particle to hop for a long distance is very low, here we can
be defined and the situations where the argument of the stdpave a further conclusion from the above analytic study that
function is zero have to be distinguish¢tie]. Since this only the relaxation process of the particle up to the nearest
problem does not exist in the studying of the nonconservedieighborhood foN=1 or the next-nearest neighborhood for
RSOS model as well as the conserved RSOS growth her&>1 determines the scaling behavior and the universality
the regularization form(17) can be used. From the above class of the model, and the higher-neighbor relaxation pro-
results derived and the comparison with recent computecesses are irrelevant and play an inessential and negligible
simulations, one can find that the regularization rela{ibn role. Thus, essentially this conserved model is still a local
is expected to be the preferable choice for this conservethodel.
model, while for regularizatiofl8), the result in contradic- Both the above analytic investigation and recent numeri-
tion with the numerical simulations is obtained. Thus, thecal simulations have verified that there is no EW term in this
discussions below are based on the results of regularizatioconserved model. The physical origin of this result can be
7). obtained by studying the microscopic process of the growth.
Kim et al.[20,2]] have argued that since a deposited particle
is allowed to hop equally in both up and down directions in
the model, there is no net surface current and consequently
no EW term can be generated according to the method of the

According to the above derivation using the regularizationtilt-dépendent surface current analysis proposed by Krug,
form (17), we can find that the terms appearing in the growthPlischke, and Siegerf29]. However, for this conserved
equation can be classified as the linear teWi#&*2h and the ~Model withN=1 RSOS condition, the uphill hopping of the
nonlinearitiesV2™(Vh)2, while the other terms can lead to deposited part!cle intl dlmen_5|ons can occur only beyond
one of them using the DRG analysis. Among them, the mos&he nearest ne|ghborhooq, which .has. been shown above tg be
relevant term is VLD nonlinearityV2(Vh)2 from the |rrelev§mt and have an |ne§sent|al influence on the scaling
renormalization-group viewpoint. Therefore, keeping thisP€havior and the universality class of the model. For the
nonlinearity as well as the meaningful lowest-order term'€/evant nearest-neighbor relaxation process-i Himen-
V*h, we have the conclusion that the conserved growtt?'o_ns’ a pqmcle is nqt allowed to hop to. the higher nearest-
model with the RSOS condition is governed by the VLD N€ighbor site, otherwise the RSOS conditjéh|<1 cannot
equation(24), which is consistent with the result of numeri- P& satisfied there. Therefore, the argument of Kitral. is
cal simulationg20,21]. Moreover, from the expressig@s) ~ duestionable foN=1 and H1 dimensions, while foN>1
of the coefficients in Eq(24) and the signs oA, for regu- th.e above. problem is not encountered and the argument of
larization (17) shown above, that ih;>0 andA, is very ~ Kim etal.is reasonable.
small, we havev,>0, which is in agreement with the phe-
nomenological consideration, and,,>0, which confirms
the previous result20,21] obtained from the argument that IV. CONCLUSION
in this mo<_jel surface current is gene_rated from the higher \ye nave directly derived the VLD equation for a con-
sloped region to the lower sloped region. _ served growth model with the RSOS condition using the

It is noted that the terms in VLD equatio24), which  magter-equation method of Vvedenséyal, which can be
determine the scaling property anq the unlversallty _class oﬁaturally extended for the nonlocal growth process. The
the modlel, come from the expansmnoof the trglnsmon MOyrowth equation as well as the coefficients are verified to be
mentK{ up to O(a®) [or O(a“) for w{” andw{Z}], and  independent oN. Although the model can contain the long-
then the higher-order expanSion is irrelevant and has no €glistance hopp|ng processes in princip|e, the relevant relax-
sential influence. Thus, it is interesting to estimate the lowesktion that determines the scaling behavior and the universal-
order of the expansion of(® andw(Z}’, which correspond ity class is only up to nearest neighborhood fo#=1 or up
to different relaxation processes of the deposited particleso next-nearest neighborhood fd¢>1, and the higher-
From formula(9) and regularization fornil7) we obtain that neighbor hoppings are irrelevant and play no essential role.
the lowest order in the expansionwfo) isO(1), andthat of  These results are based on the regularization fdifnwhich
w( D andw(D is O(a?) for N=1 andO(a) for N>1 is expected to be preferable for this conserved RSOS model,
from Egs.(10) and(11). Moreover, it is shown from formu- While for the other regularization scher(i8), the results we
las (12) and(13) that the lowest order ONi(ig) is O(a®) for c_ierive are in contradiction with recent numerical simula-
N=1 and O(a® for N>1, the lowest order ofv(ZJ is  tions. Thus, for this conserved RSOS model the results of the
0(a!9) for N=1 andO(a®) for N>1, ..., andcomrﬁonly, master-equation method depend on the. re_gularlzatlon
the lowest order in the expansionwffl') is 0(a2@ 1)) for spheme used. To choose. the proper regularization, the spe-
N=1 and O(a? 1) for N>1. Therefore, wherl=2 for cific growth rules of the discrete model as well as the com-
N=1, which corresponds to the relaxation process beyon§2"1son with the numerical simulations should be considered.

the nearest neighborhood, b= 3 for N>1, which corre-
sponds to the relaxations beyond the next-nearest neighbor-
hood, the expansion of{7}) is higher than the meaningful
0O(a%), and then cannot have relevant influence on the scal- This work was supported by the High Technology Re-
ing property of the growth model. Recent computer simulasearch and Development Program of China.

[ll. DISCUSSION

ACKNOWLEDGMENT



57

[1] A.-L. Barabai and H. E. Stanleykractal Concepts in Surface
Growth (Cambridge University Press, Cambridge, 1995
Krug and H. Spohn, irsolids Far From Equilibrium: Growth,
Morphology and Defectsedited by C. Godrehe (Cambridge
University Press, New York, 1991

[2] T. Halpin-Healy and Y.-C. Zhang, Phys. R&&4, 215(1995.

[3] J. Krug, Adv. Phys46, 139(1997.

[4] A. C. Levi and M. Kotrla, J. Phys.: Condens. Mat&&r299
(1997.

[5] J. Krim and G. Palasantzas, Int. J. Mod. Phy®, B99(1995.

[6] J. Villain, J. Phys. I1, 19 (1991).

[7] Z.-W. Lai and S. Das Sarma, Phys. Rev. L68, 2348(1991).

[8] D. E. Wolf and J. Villain, Europhys. Lettl3, 389 (1990.

[9] S. Das Sarma and P. Tamborenea, Phys. Rev. 66tt325
(1991.

[10] M. Siegert and M. Plischke, Phys. Rev.58, 917 (1994).

[11] T. Hwa and M. Kardar, Phys. Rev. 45, 7002(1992.

[12] M. Marsili, A. Maritan, F. Toigo, and J. R. Banavar, Rev.
Mod. Phys.68, 963(1996.

[13] M. Plischke, Z. Raz, and D. Liu, Phys. Rev. B5, 3485
(1987; Z. Racz, M. Siegert, D. Liu, and M. Plischke, Phys.
Rev. A 43, 5275(199)).

[14] D. D. Vvedensky, A. Zangwill, C. N. Luse, and M. R. Wilby,
Phys. Rev. 48, 852(1993.

STOCHASTIC EQUATION FOR CONSERVED GROWTHI. . .

4485

[15] K. Park and B. Kahng, Phys. Rev.H, 796 (1995.

[16] M. Predota and M. Kotrla, Phys. Rev. &, 3933(1996.

[17] Z.-F. Huang and B.-L. Gu, Phys. Rev.5, 5935(1996.

[18] J. M. Kim and J. M. Kosterlitz, Phys. Rev. Let2, 2289
(1989.

[19] M. Siegert, Habilitationsschrift, Universit®uisburg, 1995.

[20] Y. Kim, D. K. Park, and J. M. Kim, J. Phys. &7, L533
(1994.

[21] Y. Kim and J. M. Kim, Phys. Rev. 55, 3977(1997.

[22] H. A. Kramers, PhysicdUtrechd 7, 284 (1940; J. E. Moyal,
J. R. Stat. Soc. B1, 150(1949.

[23] R. F. Fox and J. Keizer, Phys. Rev.48, 1709(1991)).

[24] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lé&#8,
889 (1986.

[25] S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser.
A 381, 17 (1982.

[26] S. Das Sarma and R. Kotlyar, Phys. Re\6® R4275(1994).

[27] A. K. Kshirsagar and S. V. Ghaisas, Phys. Re\v63 R1325
(1996.

[28] J. M. Kim and S. Das Sarma, Phys. Rev5E 1889(1995.

[29] J. Krug, M. Plischke, and M. Siegert, Phys. Rev. Lé.3271
(1993.



